Fighting the curse of dimensionality: Detection of Android Malware using Ma- chine Learning and Feature Analysis
نویسنده
چکیده
منابع مشابه
High accuracy android malware detection using ensemble learning
With over 50 billion downloads and more than 1.3 million apps in Google’s official market, Android has continued to gain popularity amongst smartphone users worldwide. At the same time there has been a rise in malware targeting the platform, with more recent strains employing highly sophisticated detection avoidance techniques. As traditional signature based methods become less potent in detect...
متن کاملN-gram Opcode Analysis for Android Malware Detection
Android malware has been on the rise in recent years due to the increasing popularity of Android and the proliferation of third party application markets. Emerging Android malware families are increasingly adopting sophisticated detection avoidance techniques and this calls for more effective approaches for Android malware detection. Hence, in this paper we present and evaluate an n-gram opcode...
متن کاملHADM: Hybrid Analysis for Detection of Malware
Android is the most popular mobile operating system with a market share of over 80% [1]. Due to its popularity and also its open source nature, Android is now the platform most targeted by malware, creating an urgent need for effective defense mechanisms to protect Android-enabled devices. In this paper, we propose a novel Android malware classification method called HADM, Hybrid Analysis for D...
متن کاملComparative evaluation of machine learning-based malware detection on Android
The Android platform is known as the market leader for mobile devices, but it also has gained much attention among malware authors in recent years. The widespread of malware, a consequence of its popularity and the design features of the Android ecosystem, constitutes a major security threat currently targeted by the research community. Among all counter methods proposed in previous publication...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014